Abstract

Understanding the plankton dynamics can help us take effective measures to settle the critical issue on how to keep plankton ecosystem balance. In this paper, a nutrient-phytoplankton-zooplankton (NPZ) model is formulated to understand the mechanism of plankton dynamics. To account for the harmful effect of the phytoplankton allelopathy, a prototype for a non-monotone response function is used to model zooplankton grazing, and nonlinear phytoplankton mortality is also included in the NPZ model. Using the model, we will focus on understanding how the phytoplankton allelopathy and nonlinear phytoplankton mortality affect the plankton population dynamics. We first examine the existence of multiple equilibria and provide a detailed classification for the equilibria, then stability and local bifurcation analysis are also studied. Sufficient conditions for Hopf bifurcation and zero-Hopf bifurcation are given respectively. Numerical simulations are finally conducted to confirm and extend the analytic results. Both theoretical and numerical findings imply that the phytoplankton allelopathy and nonlinear phytoplankton mortality may lead to a rich variety of complex dynamics of the nutrient-plankton system. The results of this study suggest that the effects of the phytoplankton allelopathy and nonlinear phytoplankton mortality should receive more attention to understand the plankton dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.