Abstract

A numerical calculation of the complex eigenfrequencies of prolate spheroids and ellipsoids, and of finite-length circular cylinders undergoing acoustic or electromagnetic eigenvibrations is reported. While mainly longitudinal eigenvibrations have been studied previously, here we obtained eigenfrequencies of vibrations which contain azimuthal components. These give rise (e.g., for the case of a cylinder) to helical surface waves, and we were able to interpret the corresponding eigenfrequencies in terms of resonances caused by the phase matching of such surface waves as they repeatedly engulf, and propagate around, the vibrating object. Phase and group velocities and absorption coefficients of the surface waves are obtained numerically from the set of complex eigenfrequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.