Abstract

The side-chain dynamics of solid polylysine at various hydration levels was studied by means of proton spin-lattice relaxation times measurements in the laboratory and tilted (off-resonance) rotating frames at several temperatures as well as Monte Carlo computer simulations. These data were analyzed together with recently measured carbon relaxation data (A. Krushelnitsky, D. Faizullin, and D. Reichert, Biopolymers, 2004, Vol. 73, pp. 1-15). The analysis of the whole set of data performed within the frame of the model-free approach led us to a conclusion about three types of the side-chain motion. The first motion consists of low amplitude rotations of dihedral angles of polylysine side chains on the nanosecond timescale. The second motion is cis-trans conformational transitions of the side chains with correlation times in the microsecond range for dry polylysine. The third motion is a diffusion of dilating defects described in (W. Nusser, R. Kimmich, and F. Winter, Journal of Physical Chemistry, 1988, Vol. 92, pp. 6808-6814). This diffusion causes almost no reorientation of chemical bonds but leads to a sliding motion of side chains with respect to each other in the nanosecond timescale. This work evidently demonstrates the advantages of the simultaneous quantitative analysis of data obtained from different experiments within the frame of the same mathematical formalism, providing for the detailed description of the nature and geometry of the internal molecular dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call