Abstract

We say that a pure $d$-dimensional simplicial complex $\Delta$ on $n$ vertices is shelling completable if $\Delta$ can be realized as the initial sequence of some shelling of $\Delta_{n-1}^{(d)}$, the $d$-skeleton of the $(n-1)$-dimensional simplex. A well-known conjecture of Simon posits that any shellable complex is shelling completable. In this note we prove that vertex decomposable complexes are shelling completable. In fact we show that if $\Delta$ is a vertex decomposable complex then there exists an ordering of its ground set $V$ such that adding the revlex smallest missing $(d+1)$-subset of $V$ results in a complex that is again vertex decomposable. We explore applications to matroids, shifted complexes, as well as $k$-vertex decomposable complexes. We also show that if $\Delta$ is a $d$-dimensional complex on at most $d+3$ vertices then the notions of shellable, vertex decomposable, shelling completable, and extendably shellable are all equivalent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.