Abstract
Copositive optimization is a special case of convex conic programming, and it consists of optimizing a linear function over the cone of all completely positive matrices under linear constraints. Copositive optimization provides powerful relaxations of NP-hard quadratic problems or combinatorial problems, but there are still many open problems regarding copositive or completely positive matrices. In this paper, we focus on one such problem; finding a completely positive (CP) factorization for a given completely positive matrix. We treat it as a nonsmooth Riemannian optimization problem, i.e., a minimization problem of a nonsmooth function over a Riemannian manifold. To solve this problem, we present a general smoothing framework for solving nonsmooth Riemannian optimization problems and show convergence to a stationary point of the original problem. An advantage is that we can implement it quickly with minimal effort by directly using the existing standard smooth Riemannian solvers, such as Manopt. Numerical experiments show the efficiency of our method especially for large-scale CP factorizations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have