Abstract
Although online monitoring of dissolved O2, pH, and dissolved CO2 is critical in bioprocesses, nearly all existing technologies require some level of direct contact with the cell culture environment, posing risks of contamination. This study addresses the need for an accurate, and completely noninvasive technique for simultaneous measurement of these analytes. A “non-contact” technique for simultaneous monitoring of dissolved O2, pH, and dissolved CO2 was developed. Instead of direct contact with the culture media, the measurements were made through permeable membranes via either a sampling port in the culture vessel wall or a flow cell. The efficacy of the “non-contact” technique was validated in Escherichia coli (E.coli), Chinese hamster ovary (CHO) culture processes, and dynamic environments created by sparging gases in cell culture medium. The measurements obtained through the developed techniques were comparable to those obtained through control methods. The noninvasive monitoring system can offer accurate, and contamination-minimized monitoring of critical process parameters including dissolved O2, pH, and dissolved CO2. These advancements will enhance the control and optimization of cell culture processes, promising improved cell culture performance.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have