Abstract
Spatially resolved transcriptomics (SRT) technologies have revolutionized the study of tissue organization. We introduce a graph convolutional network with an attention and positive emphasis mechanism, termed BINARY, relying exclusively on binarized SRT data to accurately delineate spatial domains. BINARY outperforms existing methods across various SRT data types while using significantly less input information. Our study suggests that precise gene expression quantification may not always be essential, inspiring further exploration of the broader applications of spatially resolved binarized gene expression data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.