Abstract

This paper discusses the 4-block H∞ control problem with infinite and finite jω-axis invariant zeros in the state-space realizations of the transfer functions from the control input to the controlled output and from the disturbance input to the measurement output, where these realizations are induced from a stabilizable and detectable realization of the generalized plant. This paper extends the DGKF approach to the H∞ control problem but permitting infinite and finite jω-axis invariant zeros by using the eigenstructures related to these zeros. Necessary and sufficient conditions are presented for checking solvability through checking the stabilizing solutions of two reduced-order Riccati equations and examining matrix norm conditions related to the jω-axis zeros. The parameterization of all suitable controllers is given in terms of a linear fractional transformation involving a certain fixed transfer function matrix and together with a stable transfer function matrix with gain less than 1 which is free apart from satisfying certain interpolation conditions. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.