Abstract

To be complete, the characterization of the photoionization process of atoms and molecules requires the extraction of all quantum-mechanical phases and amplitudes. So far, complete experiments have accessed only the ionization process of neutral atoms and molecules. Here we report the quantum-mechanically complete characterization of the single and double ionization of neon to yield doubly charged ions. The first ionization step by intense, polarized extreme ultraviolet light from a free-electron laser leaves the ion in a polarized state (that is, one in which the angular momentum of the ion is aligned in space). By controlling the polarization of the light, we determine the bound and continuum components of the system in the first and second ionization steps leading to the formation of doubly charged neon ions. We test the validity of our approach by characterizing the influence of autoionizing ionic states on the two-photon double-ionization mechanism. Our results are important for understanding the physics of the interaction of extreme ultraviolet radiation with ions. Photoionization is one of the most important photophysical events. This process can now be characterized in a quantum-mechanically complete manner by use of polarization-controlled extreme-ultraviolet light derived from a free-electron laser

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call