Abstract
Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4(-)) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3(-)) and nitrite (NO2(-)) surface loadings on ClO4(-) reduction and on the biofilm community's mechanism for ClO4(-) reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4(-) to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3(-) was completely reduced as well when its surface loading was ≤ 0.32 g N/m(2)-d. When CH4 delivery was limiting, NO3(-) inhibited ClO4(-) reduction by competing for the scarce electron donor. NO2(-) inhibited ClO4(-) reduction when its surface loading was ≥ 0.10 g N/m(2)-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4(-)-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4(-) reduction by the MBfR biofilm involved chlorite (ClO2(-)) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have