Abstract

IntroductionStroke, the second leading cause of death worldwide, is a complex disease influenced by many risk factors among which we can find reactive oxygen species (ROS). Since mitochondria are the main producers of cellular ROS, nowadays studies are trying to elucidate the role of these organelles and its DNA (mtDNA) variation in stroke risk. The aim of the present study was to perform a comprehensive evaluation of the association between mtDNA mutations and mtDNA content and stroke risk. Material and methodsHomoplasmic and heteroplasmic mutations of the mtDNA were analysed in a case-controls study using 110 S cases and their corresponding control individuals. Mitochondrial DNA copy number (mtDNA-CN) was analysed in 73 of those case-control pairs. ResultsOur results suggest that haplogroup V, specifically variants m.72C > T, m.4580G > A, m.15904C > T and m.16298 T > C have a protective role in relation to stroke risk. On the contrary, variants m.73A > G, m.11719G > A and m.14766C > T appear to be genetic risk factors for stroke. In this study, we found no statistically significant association between stroke risk and mitochondrial DNA copy number. ConclusionsThese results demonstrate the possible role of mtDNA genetics on the pathogenesis of stroke, probably through alterations in mitochondrial ROS production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call