Abstract
Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.
Highlights
The disproportionation of inorganic sulfur is a microbially catalyzed chemolithotrophic process, in which elemental sulfur, thiosulfate and sulfite serve as both electron donor and acceptor, and are converted to hydrogen sulfide and sulfate
The authors proposed that the associated bacteria disproportionate sulfur that stems from sulfate reduction by the methanotrophic archaea and that is released in the form of disulfide
The two validly described members of the deltaproteobacterial genus Desulfocapsa, D. sulfexigens SB164P12 [2] and D. thiozymogenes Bra2 [12] are both able to grow by disproportionating elemental sulfur, thiosulfate or sulfite under anaerobic conditions using CO2 as their sole carbon source
Summary
The disproportionation of inorganic sulfur is a microbially catalyzed chemolithotrophic process, in which elemental sulfur, thiosulfate and sulfite serve as both electron donor and acceptor, and are converted to hydrogen sulfide and sulfate. The energy output depends on the concentration of hydrogen sulfide, and under environmental conditions, where concentrations of free hydrogen sulfide are low due to precipitation with iron and/or rapid oxidation, the process becomes exergonic - e.g. ΔG0’ = -30 kJ mol-1 S0 at a hydrogen sulfide concentration of 10-7 M and a sulfate concentration of 2.8 x 10-2 M [2,3]. Isotope tracer studies have shown that inorganic sulfur disproportionation is of environmental significance in marine sediments [4,5]. It seems to be a very ancient mode of microbial energy metabolism that has presumably left significant isotopic signatures in the geological sulfur rock record [6,7]. The authors proposed that the associated bacteria disproportionate sulfur that stems from sulfate reduction by the methanotrophic archaea and that is released in the form of disulfide
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have