Abstract

Developing of instrumentation systems for sport medicine is a promising area, that's why this research evaluates the design of a new instrumented crank arm prototype for a race bicycle projecting an experiment for indoor - outdoor comparison. This study investigated the viability of an instrumentation 3D load cell for force measurement crank, implementing a design of experiment. A Complete factorial design experiment was developed for data validation, with an Analysis of Variance (ANOVA) throwing significant results for controlled factors with response variables rms, mean and variance. A software routine allowed to obtained system variables metrics for Symmetry and Cadence analysis, which came out from Effective force bilateral comparing and speed computation. Characterization allowed achieving calibration curves that were used for data conversion in force projection channels with a linearity error of 0.29% (perpendicular), 0.55% (parallel) and 0.10% (lateral). Interactions of factors resulted significant mainly for indoor tests in symmetry and cadence was significant in interactions generally for outdoor tests. Implemented system was able to generate Effective Force graph for 3D plot symmetry analysis, torque and power symmetry for specialist's analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.