Abstract

Let \({\mathscr {N}}\) be a 2-step nilpotent Lie algebra endowed with a non-degenerate scalar product \(\langle .\,,.\rangle \), and let \({\mathscr {N}}=V\oplus _{\perp }Z\), where Z is the centre of the Lie algebra and V its orthogonal complement. We study classification of the Lie algebras for which the space V arises as a representation space of the Clifford algebra \({{\mathrm{{\mathrm{Cl}}}}}({\mathbb {R}}^{r,s})\), and the representation map \(J:{{\mathrm{{\mathrm{Cl}}}}}({\mathbb {R}}^{r,s})\rightarrow {{\mathrm{End}}}(V)\) is related to the Lie algebra structure by \(\langle J_zv,w\rangle =\langle z,[v,w]\rangle \) for all \(z\in {\mathbb {R}}^{r,s}\) and \(v,w\in V\). The classification depends on parameters r and s and is completed for the Clifford modules V having minimal possible dimension, that are not necessary irreducible. We find necessary conditions for the existence of a Lie algebra isomorphism according to the range of the integer parameters \(0\le r,s<\infty \). We present a constructive proof for the isomorphism maps for isomorphic Lie algebras and determine the class of non-isomorphic Lie algebras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.