Abstract
Leptodermis scabrida complex is one of the important components of genus Leptodermis, which is mainly distributed in the Himalaya Mountains. It includes species of L. gracilis, L. hirsutiflora, L. hirsutiflora var. ciliata, L. kumaonensis, L. pilosa var. acanthoclada and L. scabrida. However, species boundaries and relationships within this complex are unclear based on current morphological and molecular evidence. We sequenced 13 complete chloroplast (cp) genomes representing seven taxa of the complex and two non-Leptodermis scabrida complex taxa. After de novo assembly and annotation, we performed comparative genomic analysis. All cp genomes showed highly conserved structures, and the genome sizes ranged from 154,369bp to 154,885bp and possessed the same GC content (37.5%). A total of 113 unique genes were identified in each cp sample, including 79 protein coding genes, 30 tRNAs, and four rRNAs. Repeat sequences and SSRs were detected, showing great similarity among all taxa in this complex. Six highly variable regions, including trnS-trnG, rps2-rpoC2, ndhF, rpl32-ccsA, ccsA-ndhD, and ndhA, were screened as potential molecular markers for phylogenetic reconstruction. Based on a total of 27 complete cp genome sequences, the consistent and robust phylogenetic relationships were firstly constructed and the same species within L. scabrida complex clustered into a group. The divergence time of Leptodermis from ancestral taxa occurred at the middle Eocene, which might be due to geological and climatic changes. The 13 complete cp genome sequences reported will provide new clues for phylogeny elucidation, species identification and evolutionary history speculation of Leptodermis, as well as in Rubiaceae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.