Abstract

This paper proposes the use of simple proportional plus damping injection (P+d) controllers for delayed bilateral teleoperation of a rotorcraft UAV. The proposed control scheme involves P+d remote and local controllers, considers master and slave dynamics, and takes into account asymmetric time-varying delays. The stability of the proposed teleoperation system is analyzed using Lyapunov-Krasovskii functionals and delay-dependent stability criteria are obtained under linear-matrix-inequalities conditions. The performance of the teleoperation scheme is tested driving a virtual nonlinear 6DOF dynamic model of a minihelicopter in a human-in-the-loop simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.