Abstract

The stability and trajectory tracking control problem of passive teleoperation systems with the presence of the symmetrical and unsymmetrical time-varying communication delay is addressed in this paper. The proposed teleoperator is designed by coupling local and remote sites by delaying position signals of the master and slave manipulator. The design also comprises local proportional and derivative signals with nonlinear adaptive terms to cope with parametric uncertainty associated with the master and slave dynamics. The Lyapunov–Krasovskii function is employed to establish stability conditions for the closed-loop teleoperators under both symmetrical and unsymmetrical time-varying communication delay. These delay-dependent conditions allow the designer to estimate the control gains a priori in order to achieve asymptotic property of the position, velocity and synchronisation errors of the master and slave systems. Finally, simulation results along with comparative studies are presented to illustrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.