Abstract
Spherical virus capsids are large, multimeric protein shells whose assembly and stability depend on the establishment of multiple non-covalent interactions between many polypeptide subunits. In a foot-and-mouth disease virus capsid, 42 amino acid side chains per protomer are involved in noncovalent interactions between pentameric subunits that function as assembly/disassembly intermediates. We have individually truncated to alanine these 42 side chains and assessed their relevance for completion of the virus life cycle and capsid stability. Most mutations provoked a drastic reduction in virus yields. Nearly all of these critical mutations led to virions whose thermal inactivation rates differed from that of the parent virus, and many affected also early steps in the viral cycle. Rapid selection of genotypic revertants or variants with forward or compensatory mutations that restored viability was occasionally detected. The results with this model virus indicate the following. (i). Most of the residues at the interfaces between capsid subunits are critically important for viral function, in part but not exclusively because of their involvement in intersubunit recognition. Each hydrogen bond and salt bridge buried at the subunit interfaces may be important for capsid stability. (ii). New mutations able to restore viability may arise frequently at the subunit interfaces during virus evolution. (iii). A few interfacial side chains are functionally tolerant to truncation and may provide adequate mutation sites for the engineering of a thermostable capsid, potentially useful as an improved vaccine.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have