Abstract
Oxygen vacancies are ubiquitous in oxides, and taking advantage of their mobility is the cornerstone for a variety of future applications. The visualization and quantification of collective defect flow based on electrochromism is a powerful approach to explore oxygen kinetics and electrochemical reaction even in cases that electronic conduction is considerably mixed, but whether or not the measured kinetic properties harmonize with those obtained by the conventional impedance spectroscopy remains veiled. Here, we identify complementary relationships between the two methods by investigating the oxygen vacancy transport in Ca 30%-doped bismuth ferrite thin films epitaxially grown on SrTiO3 (110) substrates. We find that the activation energy of ionic hopping is 0.78 (or 0.92 eV) for the application of an electric bias along [001] (or [11¯0]) due to the grain elongation along [001]. We anneal the films in an N2 gas environment at high temperatures to suppress the electronic contribution for access to standard impedance spectroscopy. The oxygen kinetic properties obtained from the two methods are consistent with each other, complementarily revealing the collective phase evolution as well as the ionic impedance of the bulk, grain boundary, and interfacial regions. These comparative works provide useful insights into ionic defect conduction in oxides in an intuitive and quantitative manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.