Abstract
Oxygen-vacancy-ordered brownmillerite oxides offer a reversible topotactic phase transition by significantly varying the oxygen stoichiometry of the material without losing its lattice framework. This phase transition leads to substantial changes in the physical and chemical properties of brownmillerite oxides, including electrical and ion conductivity, magnetic state, and oxygen diffusivity. In this study, the variations in the resistive switching mode of the epitaxial brownmillerite SrFeO2.5 thin film in the device were studied by systematically controlling the oxygen concentration, which could be varied by changing the compliance current during the first electroforming step. Depending on the compliance current, the SrFeO2.5 devices exhibited either low-power bipolar resistive switching or complementary resistive switching behaviors. A physical model based on the internal redistribution of oxygen ions between the interfaces with the top and the bottom electrodes was developed to explain the complementary resistive switching behavior. This model was experimentally validated using impedance spectroscopy. Finally, the gradual conductance variation in the brownmillerite SrFeO2.5 thin films was exploited to realize synaptic learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.