Abstract

Complementary information set codes (CIS codes) over a finite field GF(p) are closely connected to correlation-immune functions over GF(p), which are important cryptographic functions, where p is an odd prime. Using our CIS codes over GF(p) of minimum weight $$d+1$$d+1, we can obtain p-ary correlation-immune function of strength d. We find an efficient method for constructing CIS codes over GF(p). We also find a criterion for checking equivalence of CIS codes over GF(p). We complete the classification of all inequivalent CIS codes over GF(p) of lengths up to 8 for $$p = 3,5,7$$p=3,5,7 using our construction and criterion. We also find their weight enumerators and the order of their automorphism groups. The class of CIS codes over GF(p) includes self-dual codes over GF(p) as its subclass, and some CIS codes are formally self-dual codes as well; we sort out our classification results. Furthermore, we show that long CIS codes over GF(p) meet the Gilbert---Vashamov bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.