Abstract

The competitive binding trends of Ni(II) and Eu(III) on montmorillonite in the absence/presence of Na-oxalate are explored by using batch sorption/desorption technique, speciation modeling, and X-ray diffraction (XRD) analysis. With a series of molar Ni:Eu ratios (i.e., 1:1, 5:1, 10:1, 1:5, and 1:10), the coexisting Ni(II) did not affect the sequestration behaviors and immobilization mechanisms of Eu(III). In contrast, the presence of Eu(III) obviously suppressed the sorption percentages of Ni(II) in the acidic pH range. Even though no obvious influence of Eu(III) on the macroscopic binding trends of Ni(II) was observed under alkaline conditions, the fraction of Ni(II) adsorbed by the inner-sphere complexation mechanism decreased and that of Ni(II) precipitation increased with rising molar Ni:Eu ratio. The coexisting Na-oxalate did not influence Eu(III) sorption, while inhibited the sorption of Ni(II). The XRD analysis indicated the potential formation of two Eu-oxalate precipitate phases (i.e., Eu2(C2O4)3·xH2O(s)-1 and Eu2(C2O4)3·xH2O(s)-2) at different pH values (4.0 and 6.5) and Na-oxalate concentrations (ranging from 0.5 to 5.0mM). Interestingly, the Eu2(C2O4)3·xH2O(s)-2 phase would be transformed into the Eu2(C2O4)3·xH2O(s)-1 solid with the increase of Na-oxalate concentration. The research findings could provide essential data for evaluating the fate of coexistent Eu(III) and Ni(II) in the complicated aquatic environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call