Abstract

AbstractWe have recently demonstrated a new implantation technique called SPIMOX (separation by plasma implantation of oxygen) to synthesize silicon-on-insulator structures using plasma immersion ion implantation (PIII) process. the implantation is performed by applying a large negative bias to a Si wafer immersed in an oxygen plasma created by an ECR source. Since the technique has no mass analysis, coexistence of O+ and O2+ ions in oxygen plasma can cause a non-Gaussian profile of the as-implanted oxygen distribution. We observed that during post-implantation annealing, the ripening process of the oxide precipitates depends on depth and concentration of the oxygen peaks. IN addition, implanted oxygen can migrate towards the Si surface during annealing, preventing a continuous buried oxide layer formation. IN this paper, we report our observation on the effect of the implantation profile on the competitions between internal oxidation at different depths and between internal and surface oxidation processes. With an additional He implantation, we demonstrate that the nucleation of oxide precipitation can be enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.