Abstract
We investigate competitive online algorithms for online convex optimization (OCO) problems with linear in-stage costs, switching costs and ramp constraints. While OCO problems have been extensively studied in the literature, there are limited results on the corresponding online solutions that can attain small competitive ratios. We first develop a powerful computational framework that can compute an optimized competitive ratio based on the class of affine policies. Our computational framework can handle a fairly general class of costs and constraints. Compared with other competitive results in the literature, a key feature of our proposed approach is that it can handle scenarios where infeasibility may arise due to hard feasibility constraints. Second, we design a robustification procedure to produce an online algorithm that can attain good performance for both average-case and worst-case inputs. We conduct a case study on Network Functions Virtualization (NFV) orchestration and scaling to demonstrate the effectiveness of our proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.