Abstract
The paper studies multi-competitive continuous-time epidemic processes. We consider the setting where two viruses are simultaneously prevalent, and the spread occurs due to individual-to-individual interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the two viruses. One of the equilibrium points is the coexistence equilibrium, i.e., multiple viruses simultaneously infect separate fractions of the population. We provide a sufficient condition for the existence of a coexistence equilibrium. We identify a condition such that for certain pairs of spread matrices either every coexistence equilibrium lies on a line that is locally exponentially attractive, or there is no coexistence equilibrium. We then provide a condition that, for certain pairs of spread matrices, rules out the possibility of the existence of a coexistence equilibrium, and, as a consequence, establishes global asymptotic convergence to the endemic equilibrium of the dominant virus. Finally, we provide a mitigation strategy that employs one virus to ensure that the other virus is eradicated. The theoretical results are illustrated using simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.