Abstract
In this paper we give a rather complete analysis for a two-sex, susceptible-infective-susceptible (SIS) sexually transmitted disease (STD) model with two competing strains, where the females are divided into two different groups based on their susceptibility to two distinct pathogenic strains. We investigate the existence and stability of the boundary equilibria that characterize the competitive exclusion of the two competing strains; we also investigate the existence and stability of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the two strains. We obtain sufficient and necessary conditions for the existence and global stability of these equilibria. We verify that there is a strong connection between the stability of the boundary equilibria and the existence of the coexistence equilibrium---that is, there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist and have the same stability. This coexistence is globally stable o...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.