Abstract
Purpose– The purpose of this paper is to mine competitive intelligence in social media to find the market insight by comparing consumer opinions and sales performance of a business and one of its competitors by analyzing the public social media data.Design/methodology/approach– An exploratory test using a multiple case study approach was used to compare two competing smartphone manufacturers. Opinion mining and sentiment analysis are conducted first, followed by further validation of results using statistical analysis. A total of 229,948 tweets mentioning the iPhone6 or the GalaxyS5 have been collected for four months following the release of the iPhone6; these have been analyzed using natural language processing, lexicon-based sentiment analysis, and purchase intention classification.Findings– The analysis showed that social media data contain competitive intelligence. The volume of tweets revealed a significant gap between the market leader and one follower; the purchase intention data also reflected this gap, but to a less pronounced extent. In addition, the authors assessed whether social opinion could explain the sales performance gap between the competitors, and found that the social opinion gap was similar to the shipment gap.Research limitations/implications– This study compared the social media opinion and the shipment gap between two rival smart phones. A business can take the consumers’ opinions toward not only its own product but also toward the product of competitors through social media analytics. Furthermore, the business can predict market sales performance and estimate the gap with competing products. As a result, decision makers can adjust the market strategy rapidly and compensate the weakness contrasting with the rivals as well.Originality/value– This paper’s main contribution is to demonstrat the competitive intelligence via the consumer opinion mining of social media data. Researchers, business analysts, and practitioners can adopt this method of social media analysis to achieve their objectives and to implement practical procedures for data collection, spam elimination, machine learning classification, sentiment analysis, feature categorization, and result visualization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.