Abstract

A competitive fluorescent immunoassay is described for the ultrasensitive determination of amyloid beta peptide1-42 (Aβ1-42), a biomarker for early diagnosis of Alzheimer's disease. N, S-doped graphene quantum dots (N, S-GQDs) were freely assembled on the surface of Ag@SiO2 nanoparticles to obtain a composite (Ag@SiO2@N, S-GQD nanocomposite), which was successfully prepared and characterized. By theoretical study, the optical properties of nanocomposites are improved compared with GQDs, due to the advantages of combining N, S co-doping and metal-enhanced fluorescence (MEF) effect of Ag NPs. In addition, Aβ1-42 was modified by Ag@SiO2@N, S-GQDs to prepare a probe with high photoluminescence properties (Ag@SiO2@N, S-GQDs-Aβ1-42). In the presence of Aβ1-42, a competitive reaction towards anti-Aβ1-42 fixed on the ELISA plate was proceeded between Aβ1-42 and Ag@SiO2@N, S-GQDs-Aβ1-42 by specific capture of antigen-antibody. The emission peak of Ag@SiO2@N, S-GQDs-Aβ1-42 (400 nm emission) was used for the quantitative determination of Aβ1-42. Under the optimal conditions, the fluorescent immunoassay exhibited a linear range of 0.32 pg·mL-1-5 ng·mL-1 with a detection limit of 0.098 pg·mL-1. The results show that the immunoassay has good analytical ability and can provide a new method for the clinical determination of Aβ1-42.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call