Abstract
Epithelial-to-mesenchymal transition (EMT) plays a role in the invasion and metastasis of cancer cells. During this phenomenon, Snail can promote tumor progression by upregulating mesenchymal factors and downregulating the expression of pro-apoptotic proteins. Therefore, interventions on the expression rate of Snails may show beneficial therapeutic applications. In this study, the C-terminal region of Snail1, capable of binding to E-box genomic sequences, was subcloned into the pAAV-IRES-EGFP backbone to make complete AAV-CSnail viral particles. B16F10 as a metastatic melanoma cell line, with a null expression of wild type TP53 was transduced by AAV-CSnail. Moreover, the transduced cells were analyzed for in vitro expression of apoptosis, migration, and EMT-related genes, and in vivo inhibition of metastasis. In more than 80% of the AAV-CSnail transduced cells, the CSnail gene expression competitively reduced the wild-type Snail functionality and consequently lowered the mRNA expression level of EMT-related genes. Furthermore, the transcription level of cell cycle inhibitory factor p21 and pro-apoptotic factors were promoted. The scratch test showed a decrease in the migration ability of AAV-CSnail transduced group compared to control. Finally, metastasis of cancer cells to lung tissue in the AAV-CSnail-treated B16F10 melanoma mouse model was significantly reduced, pointing out to prevention of EMT by the competitive inhibitory effect of CSnail on Snail1 and increased apoptosis of B16F10 cells. The capability of this successful competition in reducing the growth, invasion, and metastasis of melanoma cells indicates that gene therapy is a promising strategy for the control of the growth and metastasis of cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.