Abstract

Motivated by applications in recommender systems, web search, social choice and crowdsourcing, we consider the problem of identifying the set of top $K$ items from noisy pairwise comparisons. In our setting, we are non-actively given $r$ pairwise comparisons between each pair of $n$ items, where each comparison has noise constrained by a very general noise model called the strong stochastic transitivity (SST) model. We analyze the competitive ratio of algorithms for the top-$K$ problem. In particular, we present a linear time algorithm for the top-$K$ problem which has a competitive ratio of $\tilde{O}(\sqrt{n})$; i.e. to solve any instance of top-$K$, our algorithm needs at most $\tilde{O}(\sqrt{n})$ times as many samples needed as the best possible algorithm for that instance (in contrast, all previous known algorithms for the top-$K$ problem have competitive ratios of $\tilde{\Omega}(n)$ or worse). We further show that this is tight: any algorithm for the top-$K$ problem has competitive ratio at least $\tilde{\Omega}(\sqrt{n})$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.