Abstract
Pairwise preference information, which involves users expressing their preferences by comparing items, plays a crucial role in decision-making and has recently found application in recommendation systems. In this study, we introduce GcPp, a clustering algorithm that leverages pairwise preference data to generate recommendations for user groups. Initially, we construct individual graphs for each user based on their pairwise preferences and utilize a graph convolutional network to predict similarities between all pairs of graphs. These predicted similarity scores form the foundation of our research. We then construct a new graph where users are nodes and the edges are weighted according to the predicted similarities. Finally, we perform clustering on the graph’s nodes (users). By evaluating various metrics, we found that employing a similarity metric based on a convolutional neural network (SimGNN) with our proposed ground truth called Top-K yielded the highest accuracy. The proposed approach is specifically designed for group recommendation systems and holds significant potential for group decision-making problems. Code is available at https://github.com/RozaAbolghasemi/Group_Recommendation_Syatem_GcPp_clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.