Abstract

Nitrite hydrogenation is studied in steady‐state as well as transient operation using a Pd catalyst in a tubular membrane contactor reactor. A negative reaction order in hydrogen in steady state operation proofs that hydrogen and nitrite adsorb competitively. In transient operation, feeding nitrite to the Pd surface fully covered with hydrogen results initially in very low conversion of nitrite, speeding up once hydrogen is removed from part of the Pd surface. Additional proof for competitive adsorption between hydrogen and nitrite is provided by the observation that exposure of a nitrite‐covered catalyst to hydrogen induces desorption of nitrite. Formation of ammonia in these experiments proceeds via two pathways, first via a fast reaction followed by extremely slow hydrogenation of adsorbed N atoms, which is kinetically not relevant. This information is relevant for designing effective and selective catalysts when operating at very low nitrite concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.