Abstract

The coexistence between ferromagnetic ordering and superconducting transport in tunnel ferromagnetic Josephson junctions (SFS JJs) accounts for a wide range of unconventional physical properties. The integration of both insulating ferromagnets or multi-layered insulator-ferromagnet barriers allows to combine ferromagnetic switching properties with peculiar low quasiparticle dissipation, which could enhance the capabilities of SFS JJs as active elements in quantum circuits. Here we show that split-transmon qubits based on tunnel ferromagnetic JJs realize an ideal playground to study noise fluctuations in ferromagnetic Josephson devices. By considering the transport properties of measured Al-based tunnel SFS JJs, we report on a theoretical study of the competition between intrinsic magnetization fluctuations in the barrier and quasiparticles dissipation, thus providing specific operation regimes to identify and disentangle the two noise sources, depending on the peculiar properties of the F layer and F/S interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.