Abstract

The continuous development of superconducting electronics is encouraging several studies on hybrid Josephson junctions (JJs) based on superconductor/ferromagnet/superconductor (SFS) heterostructures, as either spintronic devices or switchable elements in quantum and classical circuits. Recent experimental evidence of macroscopic quantum tunneling and of an incomplete 0-pi transition in tunnel-ferromagnetic spin-filter JJs could enhance the capabilities of SFS JJs also as active elements. Here, we provide a self-consistent electrodynamic characterization of NbN/GdN/NbN spin-filter JJs as a function of the barrier thickness, disentangling the high-frequency dissipation effects due to the environment from the intrinsic low-frequency dissipation processes. The fitting of the IV characteristics at 4.2K and at 300mK by using the Tunnel Junction Microscopic model allows us to determine the subgap resistance Rsg, the quality factor Q and the junction capacitance C. These results provide the scaling behavior of the electrodynamic parameters as a function of the barrier thickness, which represents a fundamental step for the feasibility of tunnel ferromagnetic JJs as active elements in classical and quantum circuits, and are of general interest for tunnel junctions other than conventional SIS JJs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call