Abstract
In this paper, a stochastic chemostat model in which n-species compete for a single growth-limiting substrate is considered. We first prove that the stochastic model has an unique global positive solution by using the comparison theorem for stochastic differential equations. Then we show that when the noise intensities are small, the competition outcome in the chemostat is completely determined by the species’ stochastic break-even concentrations: the species with the lowest stochastic break-even concentration survives and all other species will go to extinction in the chemostat. In other words, the competitive exclusion principle holds for stochastic competition chemostat model when the noise intensities are small. Moreover, we find that noise may change the destiny of the species. Numerical simulations illustrate the obtained results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.