Abstract

In this paper, a stochastic chemostat model with an inhibitor is considered, here the inhibitor is input from an external source and two organisms in chemostat compete for a nutrient. Firstly, we show that the system has a unique global positive solution. Secondly, by constructing some suitable Lyapunov functions, we investigate that the average in time of the second moment of the solutions of the stochastic model is bounded for a relatively small noise. That is, the asymptotic behaviors of the stochastic system around the equilibrium points of the deterministic system are studied. However, the sufficient large noise can make the microorganisms become extinct with probability one, although the solutions to the original deterministic model may be persistent. Finally, the obtained analytical results are illustrated by computer simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.