Abstract

The interactions of nucleotides at the allosteric and catalytic sites of phosphorylase kinase were examined. Binding of nucleoside triphosphates at the nucleoside diphosphate allosteric activation site inhibited enzymatic activity; this was observed with either ATP or GTP. Increasing concentrations of ADP caused a biphasic response: low concentrations activated and higher concentrations inhibited. Inhibition was due to the binding of ADP at the catalytic site, as opposed to an allosteric inhibitory site. GDP activated at low concentrations, but did not inhibit even at relatively high concentrations, and is therefore a specific probe for the allosteric site. Maximal activity of the nonactivated holoenzyme at pH 6.8 is achieved at an optimal ratio of ATP to ADP, such that the inhibitory actions of ATP at the allosteric site and of ADP at the catalytic site are balanced. Various potential molecular mechanisms to explain the allosteric activation by ADP were examined and ruled out, thus strengthening our previous conclusion that the activation is predominantly caused by a conformational transition in the beta subunits directly induced by the binding of ADP (Cheng, A., Fitzgerald, T. J., and Carlson, G. M. (1985) J. Biol. Chem. 260, 2535-2542; Trempe, M. R., and Carlson, G. M. (1987) J. Biol. Chem. 262, 4333-4340; Cheng, A., Fitzgerald, T. J., Bhatnager, D., Roskoski, R., Jr., and Carlson, G. M. (1988) J. Biol. Chem. 263, 5534-5542). The catalytic site exhibited high stereospecificity for inhibition by the Rp and Sp epimers of adenosine 5'-O-(1-thiodiphosphate), with the Rp epimer (Ki = 0.5 microM) being 136-fold more effective than its Sp counterpart. This can readily explain the inability of the Rp epimer to be an effective allosteric activator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.