Abstract

We report on a Kondo correlated quantum dot connected to two-dimensional leads where we demonstrate the renormalization of the g factor in the pure Zeeman case. i.e., for magnetic fields parallel to the plane of the quantum dot. For the same system, we study the influence of orbital effects by investigating the quantum Hall regime; i.e., a perpendicular magnetic field is applied. In this case an unusual behavior of the suppression of the Kondo effect and of the split zero-bias anomaly is observed. The splitting decreases with magnetic field and shows discontinuous changes that are attributed to the intricate interplay between Kondo screening and the quantum Hall edge structure originating from electrostatic screening. This edge structure, made up of compressible and incompressible stripes, strongly affects the Kondo temperature of the quantum dot and thereby influences the renormalized g factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.