Abstract

We study the isoscalar (T=0) and isovector (T=1) pairing correlations in N=Z nuclei. They are estimated from the double difference of binding energies for odd-odd N=Z nuclei and the odd-even mass difference for the neighboring odd-mass nuclei, respectively. The empirical and BCS calculations based on a T=0 and T=1 pairing model reproduce well the almost degeneracy of the lowest T=0 and T=1 states over a wide range of even-even and odd-odd N=Z nuclei. It is shown that this degeneracy is attributed to competition between the isoscalar and isovector pairing correlations in N=Z nuclei. The calculations give an interesting prediction that the odd-odd N=Z nucleus 82Nb has possibly the ground state with T=0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call