Abstract

Changes in the locations and boundaries of heterochromatin are critical during development, and de novo assembly of silent chromatin in budding yeast is a well-studied model for how new sites of heterochromatin assemble. De novo assembly cannot occur in the G1 phase of the cell cycle and one to two divisions are needed for complete silent chromatin assembly and transcriptional repression. Mutation of DOT1, the histone H3 lysine 79 (K79) methyltransferase, and SET1, the histone H3 lysine 4 (K4) methyltransferase, speed de novo assembly. These observations have led to the model that regulated demethylation of histones may be a mechanism for how cells control the establishment of heterochromatin. We find that the abundance of Sir4, a protein required for the assembly of silent chromatin, decreases dramatically during a G1 arrest and therefore tested if changing the levels of Sir4 would also alter the speed of de novo establishment. Halving the level of Sir4 slows heterochromatin establishment, while increasing Sir4 speeds establishment. yku70Δ and ubp10Δ cells also speed de novo assembly, and like dot1Δ cells have defects in subtelomeric silencing, suggesting that these mutants may indirectly speed de novo establishment by liberating Sir4 from telomeres. Deleting RIF1 and RIF2, which suppresses the subtelomeric silencing defects in these mutants, rescues the advanced de novo establishment in yku70Δ and ubp10Δ cells, but not in dot1Δ cells, suggesting that YKU70 and UBP10 regulate Sir4 availability by modulating subtelomeric silencing, while DOT1 functions directly to regulate establishment. Our data support a model whereby the demethylation of histone H3 K79 and changes in Sir4 abundance and availability define two rate-limiting steps that regulate de novo assembly of heterochromatin.

Highlights

  • Heterochromatin, or silent chromatin, is a specialized chromatin structure that plays structural and functional roles on chromosomes

  • We have shown that competition between different heterochromatic domains for limiting amounts of a heterochromatin protein, Sir4, plays a critical role in the switch from an active to an inactive state

  • Previous work has suggested that this switch is regulated by turnover of histone modifications in these regions and our data suggests that modulating Sir4 abundance acts in parallel to these changes to influence the rate of de novo assembly

Read more

Summary

Introduction

Heterochromatin, or silent chromatin, is a specialized chromatin structure that plays structural and functional roles on chromosomes. These silent domains are characterized by repression of transcription and recombination, repressive histone modifications, and epigenetic inheritance [1]. At the HM loci and telomeres, heterochromatin contains hypoacetylated and demethylated nucleosomes that are bound by the SIR (Silent Information Regulator) complex, which consists of three proteins: Sir, Sir and Sir4 [1,2]. After SIR complex spreading, recent work has suggested a final maturation step that requires the demethylation of K79 on histone H3, which is needed to form functional silent chromatin and trigger transcriptional repression [18,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call