Abstract
The competition between the constituent elements of the Cu 0.5NiAlCoCrFeTiMo alloy system during mechanical alloying was investigated and ranked with their alloying rates in getting alloyed in the mixture. By using XRD analysis, EDS mapping, extended X-ray absorption fine structure technique, and synchrotron radiation diffraction, the alloying sequence for the present alloy system is determined as Al → Cu → Co → Ni → Fe → Ti → Cr → Mo in the order of decreasing alloying rate. The alloying rate is found to correlate best with the melting point of the elements among metallurgical factors. The mechanism for this correlation is explained through the effect of melting point on solid-state diffusion and mechanical disintegration which are critical for the final alloying. This finding is valuable in predicting the alloying sequence of elements, and thus the phase evolution in multi-component alloys during mechanical alloying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.