Abstract

The denaturation of lysozyme and ribonuclease A by guanidine hydrochloride was followed in the presence and absence of glycerol and sorbitol by means of circular dichroism measurements at 25 degrees C. The protein-solvent interactions in the presence of these polyols were also studied by means of density measurements, for discussion of the mechanism of protein stabilization by polyols in terms of the multicomponent thermodynamic theory. The free energy of denaturation depends linearly on the molarity of guanidine hydrochloride at a given polyol concentration, without modification of the cooperativity of the transition. The free energy of denaturation at an infinite dilution of guanidine hydrochloride increases in proportion to the polyol concentration. These results indicate the competing solvent effects of polyols and guanidine hydrochloride on the structures of proteins. In water-protein-polyol systems, protein is preferentially hydrated to elevate its chemical potential, predominantly due to the unfavorable interaction of polyols with the exposed nonpolar amino acid residues. By linkage with the free energy of denaturation, it was quantitatively determined that the chemical potential of denatured protein is more extensively elevated by addition of polyols than that of native protein. These results demonstrate that polyols stabilize the protein structure through strengthening of the hydrophobic interaction, competing with the effect of guanidine hydrochloride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.