Abstract
Competing exchange interactions can produce complex magnetic states together with spin-induced electric polarizations. With competing interactions on alternating triangular and kagome layers, the swedenborgite CBO may have one of the largest measured spin-induced polarizations of about 1700 nC/cm$^2$ below its ferrimagnetic transition temperature at 70 K. Powder neutron-diffraction data, magnetization measurements, and spin-wave resonance frequencies in the THz range reveal that the complex spin order of multiferroic CBO can be described as a triangular array of c-axis chains ferrimagnetically coupled to each other in the ab plane. Magnetostriction on bonds that couple those chains produces the large spin-induced polarization of CBO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.