Abstract

Mylonites are characteristic rocks in ductile shear zones, and they contain two primary fabrics: i) C-fabrics, which are usually aligned parallel to the principal shear planes in the shear zones, ii) S-Foliations, which are oriented at angles to the shear plane, showing their vergence in the shear direction. Despite extensive studies of mylonite structures over several decades, the factors controlling the formation of S and C fabrics and their relative abundance in ductile shear zones are yet to be fully explored. This article investigates the competing development of S and C fabrics in ductile shear zones from two geological terrains of Eastern India. The shear zones offer macroscopic observations of various mylonitic rocks: i) C mylonites ii) S mylonites, and and iii) S-C mylonites.  Numerical simulations were performed to replicate them in model shear zones, considering a combination of transient visco-plastic rheology. The model study suggests that the growth of C- versus S- fabrics in mylonites depend on two fundamental non-dimensional parameters: imposed strain rate and bulk viscosity. It is observed that low bulk viscosity and strain rate conditions promoted the formation of S fabrics. With increase in bulk viscosity and strain rate, formation of C bands in the shear zones is facilitated leading to the localisation of strain in the form of narrow zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.