Abstract
Structural investigations in the Precambrian Singhbhum Shear Zone of eastern India document an intimate relationship between micro- to meso-scale structures and the deformation history. Shear zone rocks are characterized by composite foliation, a well-developed stretching lineation, folds, shear planes, and quartz veins. These structures reflect thrusting of the Proterozoic north Singhbhum hanging wall block over the Archaean south Singhbhum footwall block. Microstructural analysis of multiple foliation and mylonitic rocks within the shear zone helps to define its progressive evolution. During progressive deformation, overprinting of microstructures resulted in incomplete transposition or complete erasing of previously formed structures and mineral assemblages, allowing room for new dynamic equilibrium structures to form. The dominant deformation mechanism was dissolution–recrystallization, with locally important fluid circulation responsible for transformation of the quartzo-feldspathic mass into phyllonite, and quartzites and schists into mylonite. Textural features suggest that the bulk deformation was non-coaxial, evolving from dominant pure shear in the early stage followed by simple shear in a single progressive strain history of the Singhbhum Shear Zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.