Abstract

Two-dimensional (2D) ferroelectrics promise ultrathin flexible nanoelectronics, typically utilizing a metal-ferroelectric-metal sandwich structure. Electrodes can either contribute free carriers to screen the depolarization field, enhancing nanoscale ferroelectricity, or induce charge doping, disrupting the long-range crystalline order. We explore electrodes' dual roles in 2D ferroelectric capacitors, supported by first-principles calculations covering a range of electrode work functions. Our results reveal volcano-type relationships between ferroelectric-electrode binding affinity and work function, which are further unified by a quadratic scaling between the binding energy and the transferred interfacial charge. At the monolayer limit, charge transfer dictates the ferroelectric stability and switching properties. This general characteristic is confirmed in various 2D ferroelectrics including α-In2Se3, CuInP2S6, and SnTe. As the ferroelectric layer's thickness increases, the capacitor stability evolves from a charge-transfer-dominated state to a screening-dominated state. The delicate interplay between these two effects has important implications for 2D ferroelectric capacitor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.