Abstract

Irrigated agriculture is a foremost consumer of water resources to fulfill the demand for food and fiber with an increasing population under climate changes; cotton is no exception. Depleting groundwater recharge and water productivity is critical for the sustainable cotton crop yield peculiarly in the semiarid region. This study investigated the water productivity and cotton yield under six different treatments: three sowing methods, i.e., flat, ridge, and bed planting with and without plastic mulch. Cotton bed planting without mulch showed maximum water productivity (0.24 kg.m−3) and the highest cotton yield (1946 kg.ha−1). Plastic mulching may reduce water productivity and cotton yield. HYDRUS-1D unsaturated flow model was used to access the groundwater recharge for 150 days under six treatments after model performance evaluation. Maximum cumulative recharge was observed 71 cm for the flat sowing method without plastic mulch. CanESM2 was used to predict climate scenarios for RCP 2.6, 4.5, and 8.5 for the 2050s and 2080s by statistical downscale modeling (SDSM) using historical data from 1975 to 2005 to access future groundwater recharge flux. Average cumulative recharge flux declined 36.53% in 2050 and 22.91% in 2080 compared to 2017 without plastic mulch. Multivariate regression analysis revealed that a maximum 23.78% reduction in groundwater recharge could influence future climate change. Further study may require to understand the remaining influencing factor of depleting groundwater recharge. Findings highlight the significance of climate change and the cotton sowing method while accessing future groundwater resources in irrigated agriculture.

Highlights

  • Irrigated agriculture is a foremost consumer of water resources to fulfill the demand for food and fiber with an increasing population under climate changes

  • There were six treatments, i.e., ­T1, ­T2, T­ 3, T­ 4, T­ 5, and ­T6, respectively, with three repetitions

  • Cotton bed planting showed the highest cotton yield (1946 kg.ha−1), followed by ridge sowing without mulch (1886 kg.ha−1) and bed planting with mulch (1643 kg.ha−1)

Read more

Summary

Introduction

Irrigated agriculture is a foremost consumer of water resources to fulfill the demand for food and fiber with an increasing population under climate changes. Insufficient water to keep plant cells hydrated substantially limits all crop species’ productivity. Cotton production is certainly no exception; globally, 250 billion tons of water annually are required. The water footprint from cotton consumption of developed countries is cross-border, highest impact in Pakistan, India, China, and Uzbekistan (Chapagain et al 2006). Cotton crop provides fiber to the textile industry, fulfills nutrition demands in edible canola oil, and is used as herbal medicine in ancient to modern science (Shahrajabian et al 2020). Improving water productivity can enhance cotton yield in arid to semiarid regions sensitive to climate risk (Chen et al 2020; Abbas 2020).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call