Abstract
Objectives: To examine compensatory changes of different exercise durations on non-exercise physical activity (NEPA), appetite, and energy intake (EI) in normal and overweight adults, and to determine if different body mass index of individuals interact with these compensatory effects. Methods: Ten normal weight adults (nine females and one male; age: 24.0 ± 0.4 years; BMI: 20.7 ± 0.5 kg/m2) and ten overweight adults (six females and four males; age: 24.5 ± 0.9 years; BMI: 25.9 ± 0.4 kg/m2) participated in this study. The participants completed two exercise trials: short-duration continuous training (SDCT) and long-duration continuous training (LDCT), i.e., a 40 min short-duration and an 80 min long-duration continuous training in a randomized order. Total physical activity and NEPA were monitored using an accelerometer for seven consecutive days, which involved a two-day baseline observation period (C-pre-Ex), three-day exercise intervention period (Ex), and two-day follow-up period (C-post-Ex). Blood samples were collected for appetite-related hormone analysis. Appetite score was assessed using the visual analogue scale. Energy intake was evaluated by weighing the food and recording diaries. Results: The NEPA evaluation showed that it was higher for SDCT than for LDCT in the C-post-Ex period (F (1, 19) = 8.508, p = 0.009) in the total sample. Moreover, results also indicated that NEPA was lower for LDCT (F (2, 18) = 6.316, p = 0.020) and higher for SDCT (F (2, 18) = 3.889, p = 0.026) in the C-post-Ex period than in the C-pre-Ex and Ex periods in overweight group. Acyl-ghrelin revealed a main effect of time in the total sample and in normal weight and overweight groups; it was lower in the C-post-Ex period than in the C-pre-Ex and Ex periods (all p < 0.05). Total EI analysis revealed no significant changes in either the total sample or in the normal weight and overweight groups. Conclusion: These findings demonstrate that short duration exercise led to a compensatory increment in NEPA, whereas long duration exercise induced a compensatory decrease in NEPA. Moreover, there was a higher and delayed compensatory response in overweight adults than in normal weight adults. Nevertheless, energy intake was not changed across time, regardless of exercise duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Frontiers in Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.