Abstract

Scale factor nonlinearity (SFN) and dynamic range (DR) are the two significant parameters used to evaluate the performance of a resonator fiber optic gyro (RFOG). The inherent SFN of an open-loop RFOG with triangular phase modulation is first analyzed theoretically, and its relationship with the DR is simulated, showing that the DR is significantly constrained by the SFN. For our system, when the SFN is 1%, the DR is less than ±82 deg/s. To decrease the SFN in a certain DR, a real-time compensation method based on a field-programmable gate array is proposed. The compensation model is set up and the compensation scheme is illustrated. With the proposed method, the SFN of the RFOG is decreased from 1.53% to 0.057% with a DR of ±100 deg/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.