Abstract

Patient motion and its deteriorating effects in medical imaging is well known. Likewise, head rigid-body motion degrades the image quality in brain SPECT. We developed an algorithm to compensate the head motion in multi-pinhole SPECT systems within a statistical iterative image reconstruction algorithm. Previously, volunteer’s head motion was recorded by Vicon MX visual tracking system for 10 minutes while laying inside a SPECT/CT gantry. We then divided the motion into 120 intervals, each 5 seconds long. AdaptiSPECT-C, a multi-pinhole multi-detector stationary SPECT system, we are developing for dedicated brain imaging was used for this study. We generated an XCAT voxelized brain phantom emulating the activity distribution of Iodine-123 N-isopropyl-4-iodoamphetamine (IMP) for brain perfusion scan. To simulate the data acquisition with head motion, we used generic analytic simulation software we developed for multi-pinhole SPECT systems. The 6-degrees-offreedom (6-DOF) motion was incorporated into the simulation software to realistically simulate the data acquisition with motion. Our previously developed graphics-processing-unit (GPU)-based iterative reconstruction software was augmented to incorporate motion compensation using 3D Gaussian interpolation. The rigidbody (i.e. 6-DOF) head motion was input to the reconstruction software through 120 motion intervals. For comparison, we reconstructed the motion corrupted SPECT data without motion compensation and a motion-free acquisition as ground truth. The results show that our proposed motion compensation method provides a significantly better SPECT reconstruction when compared to no motion compensation. The developed software can be applied for any scan duration with any number of motion intervals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call